РЕАЛИЗАЦИЯ СКИОВО – ПРАКТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧ ВОДНОЙ СТРАТЕГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ НА ДАЛЬНЕМ ВОСТОКЕ (НА ПРИМЕРЕ АМУРСКОГО БАССЕЙНА) Бортин Н.Н.

ФГБУ «Российский научно-исследовательский институт комплексного использования и охраны водных ресурсов», Дальневосточный филиал Владивосток, Россия iwf@vlad.ru.

Ключевые слова: Схема комплексного использования и охраны водных объектов (СКИОВО), водохозяйственные проблемы, ущербы от наводнений, качество вод, водохозяйственный комплекс, регулирование стока, целевые показатели, научно-исследовательские работы (НИР).

На примере Амурского бассейна (российская часть) рассмотрены основные индикаторы и целевые показатели СКИОВО как инструмента интегрированного управления речными бассейнами на основе применения программно-целевого метода, направленные на реализацию мероприятий ФЦП «Развитие водохозяйственного комплекса Российской Федерации в 2012—2020 годах» и положений Водной стратегии Российской Федерации на период до 2020 года. Представлены основные программные мероприятия СКИОВО, необходимые для решения ключевых проблем Амурского бассейна; показана роль отраслевой водохозяйственной науки; дан основной перечень научно-исследовательских работ, способствующих достижению целевых показателей СКИОВО для российской части Амурского бассейна.

IMPLEMENTATION OF SKIOVO-AS A PRACTICAL SOLUTION OF PROBLEMS OF REGIONAL WATER STRATEGY IN THE FAR EAST OF THE RUSSIAN FEDERATION (ON THE EXAMPLE OF THE AMUR BASIN)

Bortin N.N.

Russian Research Institute for Water Resources Integrated Use and Protection Far Easter Branch iwf@vlad.ru.

Keywords: scheme of water bodies' integrated use and protection (SKIOVO), water/economic problems, flood-caused damage, water quality, water sector, runoff regulation, objectives, research work (NIR).

The author analyzes the Southern Far East water problems. The basic indicators and objectives of SKIOVO (as a tool for river basins integrated management through the use of the program-target method), aimed at the implementation of the FEDERAL TARGET PROGRAM «Development of water/economic complex of the Russian Federation in 2012-2020" and "Water strategy of the Russian Federation for the period till 2020 || have been considered with the Amur River basin (the Russian part) as a study case. The main SKIOVO program measures necessary for solution of the Amur River basin key problems have been presented. The role of water science has been shown; Research works that facilitate achievement of the SKIOVO targets for the Russian part of the basin have been listed.

Для водных объектов юга Дальнего Востока выявлены две категории проблем – региональные и трансграничные.

Региональные водные проблемы (при избытке водных ресурсов в целом по территории) определяются, в первую очередь, природно-климатическими факторами, которые обусловливают существенную годовую и внутригодовую неравномерность водного режима рек с экстремальными гидрометеорологическими явлениями практически ежегодной повторяемости, а также антропогенной деятельностью. Годовая и внутригодовая неравномерность речного стока приводит в годы с экстремальной водностью либо к существенному дефициту качественной питьевой воды (и наряду с загрязнением водных объектов обостряет проблему водоснабжения), либо к катастрофическим наводнениям.

Наличие границы с КНР и КНДР по рекам Амур, Раздольная, Туманная и акватории оз. Ханка, определяет ряд трансграничных (межгосударственных) проблем, связанных с изменением (ухудшением) гидрохимического режима водных объектов и переформированием русел рек, вызванных русловыми процессами и обусловленных односторонними берегоукрепительными работами на отдельных участках перечисленных рек, а также несогласованных односторонних действий сопредельных государств по строительству комплекса инженерных мероприятий по переброске и регулированию речного стока, что, например, привело к подтоплению значительной части российской территории в бассейне оз. Ханка [1].

В Российской Федерации вопросы использования и охраны водных ресурсов определены Водным кодексом, в котором предусмотрена разработка Схем комплексного использования и охраны водных объектов (СКИОВО), в т. ч. и трансграничных, как инструмента интегрированного управления речными бассейнами на основе применения программно-целевого метода.

Основные индикаторы и целевые показатели разрабатываемых СКИОВО ориентированы на реализацию мероприятий ФЦП «Развитие водохозяйственного комплекса Российской Федерации в 2012—2020 годах» [2], долгосрочных региональных программ и положений Водной стратегии Российской Федерации на период до 2020 года [3].

СКИОВО, в соответствии с 33 статьей Водного кодекса РФ, разрабатываются для решения главной задачи — формирования инструментария принятия управленческих решений с целью достижения устанавливаемых Схемой целевых показателей качества воды, уменьшения негативных последствий наводнений и других видов негативного воздействия вод, связанных с функционированием водохозяйственного комплекса с учетом современного состояния и перспективы социально-экономического развития хозяйствующих в бассейнах рек субъектов РФ; включает в себя систематизированные материалы о состоянии водных объектов и их использовании; является основой осуществления водохозяйственных мероприятий и мероприятий по охране водных объектов, расположенных в границах речных бассейнов.

Дальний Восток – территория опережающего развития. В настоящее время здесь функционирует достаточно сложный водохозяйственный комплекс, включая два таких крупных гидроузла, как Зейский и Бурейский, завершается строительство Нижнебурейской ГЭС и предполагается строительство еще нескольких водохранилищ. Здесь также расположены сотни искусственных водных объектов различного назначения, образованных напорными гидротехническими сооружениями, включая противопаводковые защитные сооружения; сотни очистных сооружений и свыше полутора тысяч выпусков сточных вод [4].

На территории российской части Амурского бассейна (где находятся пять субъектов РФ – Забайкальский, Хабаровский и Приморский края, Амурская область и Еврейская автономная область) развивается промышленность, расширяются территории городов Чита, Благовещенск, Хабаровск, Комсомольск-на-Амуре и других, осваиваются новые площади под добывающие отрасли промышленности и сельскохозяйственное производство. Стратегия развития Приамурского региона, отраженная в ряде региональных программ и

государственной программе «Социально-экономическое развитие Дальнего Востока и Байкальского региона, 2014—2025 гг.)» [5], свидетельствует о значительной зависимости намеченных программных мероприятий от водного фактора, в т. ч. от наличия и качества водных ресурсов; природных рисков, связанных с наводнениями; а также от решения межгосударственных вопросов охраны и использования трансграничных водных объектов. В то же время, интенсивное освоение территории без регламентации допустимых нагрузок на водные объекты может негативно сказаться на количественных и качественных характеристиках водно-ресурсного потенциала и на биоресурсах р. Амур.

Именно разработанные СКИОВО и НДВ должны стать основой осуществления водохозяйственных мероприятий и мероприятий по охране водных объектов в границах бассейнов рек и внутренних водоемов, в которых определено целевое состояние водного объекта с учетом поэтапных сроков его достижения.

Для бассейна Амура СКИОВО в полном объеме разрабатывалась для каждой из 9 гидрографических единиц (подбассейнов), расположенных на российской территории [6].

Кратко рассмотрим материалы Схемы, направленные на решение социальноэкологических водных проблем юга Дальнего Востока российской части бассейна р. Амур.

Для российской части Амурского бассейна были определены ключевые проблемы, решение которых возможно в ходе реализации СКИОВО до 2020 г. Это проблемы негативного воздействия вод, экологического состояния водных объектов, водообеспечения (локально) и вопросы организационно-управленческого характера. Поэтому основными целями реализации Схемы являются: снижение последствий негативного воздействия вод, улучшение качественного состояния водных объектов. Для их достижения в составе СКИОВО разработан комплекс фундаментальных, институциональных и структурных мероприятий, а также мероприятий по улучшению оперативного контроля [7].

В состав фундаментальных мероприятий СКИОВО включены работы по развитию сети наблюдений за состоянием водных объектов и ряд научно-исследовательских работ, направленных на гарантированное обеспечение потребностей населения и экономики в водных ресурсах; снижение загрязнения, улучшение состояния, восстановление и экологическую реабилитацию водных объектов; обеспечение защиты от паводков населенных пунктов, хозяйственных объектов, сельскохозяйственных и других ценных земель; предупреждение негативного воздействия вод и обеспечение безопасности гидротехнических сооружений, а также НИР по прогнозированию русловых деформаций при строительстве объектов берегоукрепления и противопаводковой защиты (всего 14 НИР).

Перечень НИР составлен, исходя из современных требований к научно-методической базе управления использованием и охраной водных объектов, предупреждению и минимизации негативного воздействия вод.

Развитию научно-методической базы также содействуют изложенные в Схеме разработка концептуальных подходов перспективного направления развития систем водоотведения и целевых программ снижения негативного воздействия ливневых и неорганизованных сточных вод на качество вод водных объектов.

В состав структурных мероприятий Схемы включены работы по снижению последствий негативного воздействия вод; снижению содержания загрязненных сточных вод в общем объеме отводимых в водные объекты стоков, подлежащих очистке; увеличению водообеспеченности населения и экономики; опосредованно, путем установления водоохранных зон, мероприятия по сохранению и экологическому оздоровлению биоты вод и наземных экосистем поймы.

В состав институциональных мероприятий вошли: разработка деклараций безопасности ГТС; установление границ водоохранных зон водных объектов; ряд НИР, способствующих решению ключевых проблем Амурского бассейна и включающих методику долгосрочного прогнозирования катастрофических наводнений; методику и пакет нормативно-правовых документов страхования от наводнений; положение о регулировании хозяйственной деятельности на территориях, подверженных негативному воздействию вод; норм

проектирования «Незатапливаемые дамбы обвалования для инженерной защиты пойменных территорий в условиях муссонного климата юга Дальнего Востока»; проект регионального закона «Об использовании паводкоопасных территорий на реках бассейна р. Амур» и пакет подзаконных актов, уточняющих положения данного закона; рекомендаций по объему и порядку осуществления контрольно-надзорных мероприятий, направленных на защиту водных объектов от загрязнения, а также на обеспечение безопасности водохозяйственной инфраструктуры бассейна р. Амур.

Без разработки вышеперечисленных НИР невозможно достижение результатов, которые планируется получить после реализации институциональных мероприятий Схемы в целом.

Мероприятия по улучшению оперативного управления предусматривают капитальный ремонт ГТС, восстановление очистных сооружений и канализационных сетей. Здесь НИР не предусмотрены.

В связи с катастрофическим паводком на Амуре в 2013 г. остановимся на вопросе негативного влияния паводков и обоснования мероприятий по минимизации ущербов от них. Ущерб от паводков 2013 г. в бассейне Амура составил свыше 500 млрд руб. (что превышает годовой бюджет всех субъектов РФ Дальневосточного федерального округа). Это, конечно, случай неординарный, но и раньше ущербы от наводнений были огромными. Так, например, от паводков в 1958 г. на р. Амуре ущерб в три раза превысил объем капиталовложений в промышленность Приамурья за 1959—1965 гг.

Экономический ущерб от катастрофических паводков в Приморском крае (где около 60 % территории относится к бассейну Амура) уже достигал 8 % валового регионального продукта и составляет в среднемноголетнем периоде 2,6 % его величины. В 2016 г. ущерб от паводка, вызванного тайфуном «Лайонрок», в Приморье превысил 7 млрд руб.

В разрезе форм собственности на долю государственной и муниципальной собственности хозяйствующих в бассейне р. Амур субъектов РФ (также как и в целом по России) приходится свыше 50 % объема экономического ущерба от паводков. В российской части бассейна Амура (как отмечено выше) размещены сотни различных ГТС, относящихся к водохозяйственному комплексу. В то же время защитные гидротехнические сооружения здесь имеются лишь в отдельных населенных пунктах, но и они не всегда соответствуют нормативным требованиям и надлежащим образом не эксплуатируются. Некоторые защитные дамбы возводились в основном стихийно и поэтому не могут рассматриваться как капитальные сооружения, созданные для защиты населенных пунктов.

Нормативная база по проектированию объектов противопаводковой защиты в значительной степени не соответствует современным требованиям и недостаточно учитывает природно-климатические особенности формирования экстремальных характеристик стока рек. И потому, например, в Приморском крае, где за период интенсивного мелиоративного строительства было запроектировано и построено 1200 км защитных дамб, в паводок 1989 г., вызванный тайфуном «Джуди», было разрушено 240 км дамб. Инвентаризация ГТС, проведенная Амурским БВУ в 2006 г., (после этого периода, несмотря на ряд серьезных наводнений, в т. ч. катастрофических, она больше не проводилась) показала, что в удовлетворительном состоянии находилось не более 60 % ГТС федеральной собственности, требующих капремонта.

Отсутствие нормативов и механизмов регулирования землепользования и застройки паводковоопасных территорий также ведет к постоянному возрастанию потенциального ущерба от наводнений. Учитывая изложенное, в СКИОВО (о чем упоминалось выше) предусмотрена рекомендаций, разработка научно-обоснованных включающих территориальные строительные (TCH) проектированию нормы ПО противопаводковой защиты (незатапливаемые дамбы обвалования - основной способ защиты населения и сельскохозяйственных земель от наводнений в условиях муссонного климата) и правовых документов (регламента) по регулированию хозяйственной деятельности на территориях, подверженных периодическому воздействию паводков.

Наводнение 2013 г. на Амуре показало, что без крупных регулирующих водохранилищ (на притоках) и специальных противопаводковых сооружений (незатапливаемые дамбы минимизировать обвалования) предотвратить, либо существенно ущербы катастрофических наводнений невозможно. Во исполнение поручений Президента России В.В. Путина (№ Пр-2192 от 18.09.2013) Минэнерго России и ОАО «Русгидро» подготовили вариант со строительством четырех ГЭС с противопаводковыми водохранилищами на притоках Амура. Однако, учитывая то, что создание этих ГЭС займет немало лет, а наводнения не будут ждать, сегодня следует усилить роль действующих ГЭС и водохранилищ в регулировании стока. Поэтому в числе первоочередных объектов строительства и реконструкции должны быть дамбы обвалования для защиты населения и хозяйственных объектов.

Особое внимание необходимо уделить пойме, естественному регулятору стока реки, и инженерным мероприятиям в руслах рек и их береговой полосе. Хаотичное, неконтролируемое освоение поймы, техногенные изменения в русле и на пойме (например, в районе Хабаровского водного узла) привели к подпорным явлениям и усугубили паводковую ситуацию в 2013 г. [8].

В результате реализации программных мероприятий СКИОВО бассейна р. Амур (российская часть) до 2020 г. предусмотрено:

- увеличение суммарной мощности очистных сооружений, что позволит осуществить прирост объема нормативно-очищенных сточных вод до 602 млн м³/год или 36 % от объема недостаточно очищенных и неочищенных стоков (без учета мероприятий по очистке ливневого стока с урбанизированных территорий);
- снижение влияния диффузного загрязнения водных объектов за счет обустройства водоохранных зон;
- повышение уровня безопасности ГТС, в т. ч. существующих водохранилищ и защитных дамб, за счет разработки соответствующих правил и деклараций безопасности;
 - закрепление левого берега р. Амур на участках активного размыва;
- улучшение качества жизни населения, экологического состояния водных и наземных экосистем (поймы) региона;
- снижение уровня негативного воздействия катастрофических наводнений на социально-экономическое развитие региона.

В результате реализации мероприятий Схемы предполагается достичь стабилизации (недопущение ухудшения) состояния качества вод водных объектов за счет уменьшения поступления веществ антропогенного происхождения (легкоокисляемые органические вещества, азот аммонийный, нефтепродукты и АСПАВ).

Предотвращенный ущерб от наводнений должен составить не менее 25 % среднемноголетнего ущерба за счет строительства противопаводковых защитных сооружений.

Все мероприятия, предлагаемые к реализации в рамках СКИОВО, обоснованы и являются экономически, социально и экологически эффективными.

Итак, для российской части бассейна Амура имеется разработанная и утвержденная Росводресурсами Схема комплексного использования и охраны водных объектов, где детально проработаны необходимые мероприятия, направленные на решение ключевых проблем бассейна, в т. ч. связанные с минимизацией огромных ущербов от наводнений и загрязнением водных объектов. В рассмотрении и согласовании СКИОВО приняли участие администрации всех хозяйствующих в российской части бассейна Амура субъектов РФ, заинтересованных в ее реализации. Но реализация СКИОВО по ряду причин практически не осуществляется.

В выполняемую в настоящее время программу НИР для ФАВР не включены необходимые научно-исследовательские работы, заложенные в СКИОВО для их эффективной реализации. Скоро наступит период корректировки Схем, а наука опять окажется не удел — время будет упущено. А без разработки вышеперечисленных НИР

невозможно достижение полного объема результатов, которые планируется получить после реализации мероприятий Схемы в целом.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бортин Н.Н.*, *Горчаков А.М.* Причины экстремально высокого уровня воды трансграничного озера Ханка. // Водное хозяйство России: проблемы, технологии, управление. − 2016. №4. с.62−84.
- 2. Постановление Правительства РФ от 19.04.2012 № 350 «О федеральной целевой программе «Развитие водохозяйственного комплекса Российской Федерации в 2012-2020 годах».
- 3. Водная стратегия Российской Федерации на период до 2020 года и план мероприятий по ее реализации. Утверждена распоряжением Правительства РФ от 27.08.2009 № 1235-р. 215 с.
- 4. *Бортин Н.Н., Поздина Е.А.* Научно-методические основы обеспечения устойчивого и безопасного функционирования водохозяйственного комплекса бассейна реки Амур. Сборник докладов международной конференции «Управление водно-ресурсными системами в экстремальных условиях», 4-5 июня 2008 г. Москва, с.284–288.
- 5. Постановление Правительства РФ от 15.04.2014г. N308 «Об утверждении государственной программы Российской Федерации «Социально-экономическое развитие Дальнего Востока и Байкальского региона».
- 6. Федеральное агентство водных ресурсов. Водохозяйственное районирование территории Российской Федерации. Амурский бассейновый округ. Москва 2008. 48с.
- 7. *Бортин Н.Н.*, *Белевцов А.А.*, *Горчаков А.М.* Оценка экологического состояния и ключевые водохозяйственные проблемы российской части бассейна реки Амур. // Водное хозяйство России: проблемы, технологии, управление. -2014. №5. с.48-60.
- 8. *Бортин Н.Н., Милаев В.М.* Анализ динамики наводнений на р. Амур и возможных причин трансформации экстремальных уровней воды. // Водные и экологические проблемы, преобразование экосистем в условиях глобального изменения климата: VI Дружининские чтения: Матер. Всерос. конф. с междунар. участием. Хабаровск: ИВЭП ДВО РАН. С. 20–23. http://ivep.as.khb.ru/Meropriya/Materialy/2016/VI% 20дружининские%20 чтения.pdf

Сведения об авторе:

Бортин Николай Николаевич, директор Дальневосточного филиала (ДальНИИВХ), ФГБУ «Российский научно-исследовательский институт комплексного использования и охраны водных ресурсов», Россия, 690014, г. Владивосток, а/я 153; e-mail: iwf@vlad.ru.